Powiedzmy że masz dodać do siebie dwa ułamki : 2/3 + 3/5 Aby doprowadzić do wspólnego mianownika patrzysz jak sama nazwa wskazuje jaki byłby wspólny dla tych ułamków, w tym przypadku 15 (może też być 30, 60 itp. ty wybierasz, nim większy tym więcej liczenia)Teraz kwestia licznika.
Temat: Sprowadzanie ułamków do wspólnego mianownika. Sprowadzanie ułamków do wspólnego mianownika jest bardzo potrzebne wtedy kiedy chcemy dodać lub odjąć ułamki o różnych mianownikach….
Najmniejszy wspólny mianownik online kalkulator. Online kalkulator, który pomoże ci obliczyć najmniejszy wspólny mianownik. Kalkulator ten przeznaczony jest do znalezienia najmniejszego wspólnego mianownika dla wielu ułamków. Określ ułamki (oddzielone przecinkami): Najmniejszy wspólny mianownik:
ułamki sprowadzić do wspólnego mianownika, obli-cza przykład na tablicy: 1 6 + 3 4 = 2 12 + 9 12 = 11 12 • Uczniowie wraz z nauczycielem analizują rysun-ki ilustrujące dodawanie ułamków ze s. 167–168 w podręczniku. • Zapis notatki w zeszycie: Aby dodać lub odjąć dwa ułamki o różnych mia-nownikach, trzeba sprowadzić je do
Cześć. Dzisiaj opiszę jak sprowadzić ułamek do wspólnego mianownika. Postaram się wytłumaczyć to jak najprościej się da. Dodam też kilka przykładów. Przykłady sprowadzania ułamka do wspólnego mianownika Weźmy taki ułamek: 1/ 6 i 3/ 7. Najpierw mnożymy mianowniki przez siebie. 6*7 = 42.
agnowak. sprowadzanie do wspólnego mianownika dwóch ułamków polega na doprowadzeniu dwóch różnych mianowników do wspólnego podzielnego przez nie oba np: mamy ułamki 1/5 i 1/2 wspólnym mianownikiem dla 5 i 2 jest 10 bo 10 da się podzielić przez 5 i 2 dlatego może być wspólnym mianownikiem dla obu.
sprowadzanie wyrażeń wymiernych do wspólnego mianownika; dodawanie i odejmowanie wyrażeń wymiernych; Jak widzimy, są to te same przekształcenia, jakie wykonujemy na zwykłych ułamkach (liczbach wymiernych). Jedyną różnicą jest to, że wszystkie operacje zamiast na liczbach, wykonujemy na wielomianach.
VRCW. liczby Ricka: Jak to sprowadzić do wspólnego mianownika? n! n! L=+ k!(n−k)! (k+1)!(n−k−1)! 25 kwi 22:17 ICSP: (k+1)! = k! * (k+1) − pierwsze przemnażasz przez (k+1) (n−k)! = (n−k−1)! * (n−k) − drugie przemnażasz przez (n−k) 25 kwi 22:19 Ricka: a dlaczego tak? 25 kwi 22:23 ICSP: bo silnia jest iloczynem kolejnych liczb naturalnych: 4! = 3! * 4 n! = (n−1)! * n (n+1)! = n! * (n+1) (n+2)! = n! * (n+1) * (n+2) 25 kwi 22:25 Ricka: no niby to wiem, ale nie potrafię do końca tego zrozumieć czyli to będzie (k+1)!(n−k)! w mianowniku? 25 kwi 22:28 pytanie: tak 25 kwi 22:29 pytanie: aktualnie w pierwszym masz k! jesli przemnozysz przez (k+1) to bedzie k! * (k+1) czyli (k+1)! bo (k+1) jest o 1 wieksze od k (k+1) * k * (k−1) * (k−2) itd... mam nadzieje ze pomoglem i nie namieszalem jeszcze bardziej xD 25 kwi 22:32 Ricka: n a jeśli mam (+1) to co z tą jedynką trzeba zrobić? liczyć ją jako n+1 czy k+1 k 25 kwi 22:34 pytanie:n n k n+k + 1 = + = niby mozna tak ale nie wiem czy tu sie to przyda k k k k 25 kwi 22:37 ICSP: n liczyć ją jako ( + 1) k 25 kwi 22:37 ICSP: n n n ( +1 )! = ()! * ( + 1) k k k 25 kwi 22:38 Ricka: chodziło mi bardziej o to że to jest (n po k +1), bo w tym piśmie +1 jakoś sie tego zapisać nie dalo 25 kwi 22:43 25 kwi 22:47 Ricka: już tam zaglądałam i nie ma tego o co mi chodzi 25 kwi 22:51 ICSP: przecież na samej górze masz wzór na kombinacje. 25 kwi 22:53 Ricka: okej ale jeśli będzie n po k plus jeden w tym nawiasie to chyba nie jest to samo co samo n po k, ja tylko nie wiem tego co robić z tą jedynką 25 kwi 23:02 Ricka: nie chcę Cię denerwować bo widzę że już Cię męczę 25 kwi 23:03 25 kwi 23:04 25 kwi 23:10 Ricka: a nie jest to znowu takie ważne dzięki za pomoc 25 kwi 23:11
Mieliście kiedyś taki problem; musieliście myśleć, myśleć i myśleć jak sprowadzić dwa ułamki do wspólnego mianownika? Przedstawię Wam w tym poście jak to szybko zrobić. Może to nie jest NAJSZYBSZY sposób sprowadzenia tych dwóch ułamków do wspólnego mianownika, ale na pewno skuteczny. Weźmy sobie 2 ułamki, np. 1/2 i 3/15. Jak je szybko sprowadzić do wspólnego mianownika? Wystarczy, że pomnożymy mianownik pierwszego ułamka z mianownikiem drugiego ułamku czyli w tym przypadku 2 i 15: Otrzymujemy wynik 30. 30 jest wspólnym mianownikiem tych dwóch ułamków. Teraz wystarczy, że wykonamy rozszerzanie i możemy porównać te 2 ułamki: 1/2= 15/30 3/15= 6/30 Może Wam się wydawać że przecież mogliście uzyskać taki wynik bez tej informacji. Owszem, lecz gdy przyjdzie Wam porównać większe ułamki przyda Wam się ta informacja.
Naszym celem będzie sprowadzenie ułamków do wspólnego mianownika. Polega ono na rozszerzeniu ułamków (mnożeniu licznika i mianownika przez tą samą liczbę) tak, aby w mianowniku uzyskać wspólną liczbę dla wszystkich ułamków. To działanie jest niezbędne np. przy dodawaniu i odejmowaniu ułamków. Jak to zrobić? Weźmy dwa ułamki $\frac{2}{4}$ i $\frac{1}{3}$. Żeby znaleźć wspólny mianownik, to znajdujemy jego najmniejszą wspólną wielokrotność (NWW), to znaczy: Wypisujemy po kolei wielokrotności danych liczb. Dla 4 i 3 mamy: 4 $\rightarrow$ 4,8,12,16,20,24,… 3 $\rightarrow$ 3,6,9,12,15,18,… Wypisujemy te wielokrotności aż do momentu, jak pierwszy raz znajdziemy wielokrotność liczb 4 i 3. Jest to liczba 12. Zatem NWW(4,3) $=$ 12, czyli liczba 12 jest ich wspólnym mianownikiem. Rozszerzamy więc nasze ułamki tak, aby w mianowniku pojawiła się 12, to znaczy: $$\frac{2}{4} = \frac{2}{4} \cdot \color{blue}{\frac{3}{3}} \color{black}{= \frac{2\cdot3}{4\cdot3}=\frac{6}{12}}$$ $$\frac{1}{3} = \frac{1}{3} \cdot \color{blue}{\frac{4}{4}}\color{black}{ = \frac{1\cdot4}{3\cdot4}=\frac{4}{12}}$$Po tym procesie uzyskaliśmy wspólny mianownik. Jest to liczba 12. Dodawanie ułamków zwykłych Żeby wyjaśnić idee dodawania ułamków, to spójrz na powyższe przykłady. Przykład 1. Oblicz $\frac{1}{3} + \frac{1}{4}$. Najpierw zaczynamy od sprowadzenia do wspólnego mianownika. Z poprzedniej części wiemy, że wspólnym mianownikiem 3 i 4 jest liczba 12. Zatem: $$\frac{1}{3} + \frac{1}{4} = \frac{1 \cdot 4}{3 \cdot 4} + \frac{1 \cdot 3}{1 \cdot 4}= \frac{4}{12} + \frac{3}{12} = \frac{7}{12}$$ Przykład 2. Oblicz $1\frac{1}{5} + \frac{3}{5}$. Najpierw liczbę $1\frac{1}{5}$ zamieniamy na ułamek niewłaściwy, tj.: $$1\frac{1}{5} = \frac{1 \cdot 5 + 1}{5} = \frac{5+1}{5} = \frac{6}{5}$$Teraz możemy wykonać działanie:$$\frac{6}{5} + \frac{3}{5} = \frac{9}{5}$$ Przykład 3. Oblicz $2\frac{1}{4} + 2\frac{1}{6}$. Na początku zamieniamy liczby na ułamki niewłaściwe, czyli:$$2\frac{1}{4} = \frac{2 \cdot 4 + 1}{4} = \frac{8+1}{4} = \frac{9}{4}$$ $$2\frac{1}{6} = \frac{2 \cdot 6 + 1}{6} = \frac{12+1}{6} = \frac{13}{6}$$Znajdujemy NWW(4,6), tzn. wypisujemy wielokrotności liczb 4 i 6: 4 $\rightarrow$ 4,8,12,16,20,24,… 6 $\rightarrow$ 6,12,18,24,30,… Zatem NWW(4,6) $=$ 12. Wobec tego: $$\frac{9}{4} + \frac{13}{6} = \frac{9 \cdot 3}{4 \cdot 3} + \frac{13 \cdot 2}{3 \cdot 4} = \frac{27}{12} + \frac{26}{12} = \frac{27+26}{12} = \frac{53}{12} = 4\frac{5}{12}$$ Odejmowanie ułamków zwykłych Schemat odejmowania ułamków jest taki sam jak przy dodawaniu ułamków zwykłych. Przykład 4. Oblicz $\frac{3}{4} – \frac{1}{4}$. $$\frac{3}{4} – \frac{1}{4} = \frac{3-1}{4} = \frac{2}{4}$$ Przykład 5. Oblicz $\frac{1}{3} – \frac{1}{7}$. Analogicznie jak w poprzednich przykładach, na początku sprowadzamy ułamki do wspólnego mianownika, licząc NWW(3,7), które jest równe 21. Zatem: $$\frac{1}{3} – \frac{1}{7} = \frac{1 \cdot 7}{3 \cdot 7} – \frac{1 \cdot 3}{7 \cdot 3} = \frac{7}{21} – \frac{3}{21} = \frac{4}{21}$$ Przykład 6. Oblicz $2\frac{1}{3} – 1\frac{1}{9}$. Analogicznie jak w poprzednich przykładach, najpierw zamieniamy powyższe ułamki na ułamki niewłaściwe, tj.: $$2\frac{1}{3} = \frac{2 \cdot 3 + 1}{3} = \frac{6+1}{3} = \frac{7}{3}$$ $$1\frac{1}{9} = \frac{1 \cdot 9 + 1}{3} = \frac{9+1}{9} = \frac{10}{9}$$Następnie sprowadzamy do wspólnego mianownika, licząc NWW(3,9). Tym razem NWW(3,9) $=$ 9. Wobec tego: $$2\frac{1}{3} – 1\frac{1}{9} = \frac{7}{3} – \frac{10}{9} = \frac{7 \cdot 3}{3 \cdot 3} – \frac{10}{9} = \frac{21}{9} – \frac{10}{9} = \frac{21 – 10}{9} = \frac{11}{9}$$ Mnożenie ułamków zwykłych Żeby łatwiej wytłumaczyć zasadę mnożenia ułamków zwykłych, to spójrz na ten przykład: Przykład 7. Oblicz $2 \cdot \frac{2}{5}$. Korzystając z własności ułamka: $$\frac{a \cdot b}{c \cdot d} = \frac{a}{b} \cdot \frac{c}{d},\;\;\;\;gdzie: c, d \neq 0$$mamy:$$2 \cdot \frac{2}{5} = \frac{2}{1} \cdot \frac{2}{5} = \frac{2 \cdot 2}{1 \cdot 5} = \frac{4}{5}$$ Wystarczy tylko pomnożyć liczniki i mianowniki obu ułamków. Nie trzeba ich nawet sprowadzać do wspólnego mianownika. Przykład 8. Oblicz $2\frac{3}{4} \cdot 3\frac{2}{5}$. Analogiczne jak w przykładzie 7, mamy: $$2\frac{3}{4} \cdot 3\frac{2}{5} = \frac{2 \cdot 4 + 3}{4} \cdot \frac{3 \cdot 5 + 2}{5} = \frac{11}{4} \cdot \frac{17}{5} = \frac{11 \cdot 17}{4 \cdot 5} = \frac{187}{20} = 9\frac{7}{20}$$ Dzielenie ułamków zwykłych Żeby podzielić dwa ułamki zwykłe, to pierwszy ułamek mnożymy przez odwrotność drugiego ułamka. Przykład 9. Oblicz $\frac{1}{2} \div \frac{2}{3}$. Pierwszy ułamek pozostaje bez zmian, drugi ułamek „odwracamy”, to znaczy: zamieniamy miejscami licznik z mianownikiem, czyli: Teraz możemy obie liczby pomnożyć. Zatem:$$\frac{1}{2} \div \frac{2}{3} = \frac{1}{2} \cdot \frac{3}{2} = \frac{1 \cdot 3}{2 \cdot 2} = \frac{3}{4}$$ Przykład 10. Oblicz $3 \div \frac{1}{2}$. Podobnie jak w poprzednim przykładzie, liczbę 3 zostawiamy. Odwrotnością ułamka $\frac{1}{2}$ jest liczba $\frac{2}{1}$ czyli 2. Zatem: $$3 \div \frac{1}{2} = 3 \cdot \frac{2}{1} = \frac{3}{1} \cdot \frac{2}{1} = \frac{3 \cdot 2}{1 \cdot 1} = \frac{6}{1} = 6$$ Przykład 11. Oblicz $2\frac{2}{3} \div 3\frac{1}{4}$. Wcześniej przy dzieleniu ułamków zamienialiśmy ułamki mieszane na ułamki niewłaściwe, tzn.:$$2\frac{2}{3} = \frac{2 \cdot 3 + 2}{3} = \frac{6+2}{3} = \frac{8}{3}$$ $$3\frac{1}{4} = \frac{3 \cdot 4 + 1}{4} = \frac{12+1}{4} = \frac{13}{4}$$Liczbę $\frac{8}{3}$ zostawiamy bez zmian, natomiast liczba $\frac{13}{4}$ jest w postaci $\frac{4}{13}$. Zatem: $$2\frac{2}{3} \div 3\frac{1}{4} = \frac{8}{3} \div \frac{13}{4} = \frac{8}{3} \cdot \frac{4}{13} = \frac{8 \cdot 4}{3 \cdot 13} = \frac{32}{39}$$
vancover Użytkownik Posty: 21 Rejestracja: 7 wrz 2009, o 16:43 Płeć: Mężczyzna Lokalizacja: lublin Podziękował: 2 razy Jak to sprowadzić do wspolnego mianownika? Mam problem z rozwiązaniem tego działania \(\displaystyle{ \frac{2}{ a^{3}-1 } - \frac{2}{1-a}}\) abc666 Jak to sprowadzić do wspolnego mianownika? Post autor: abc666 » 20 wrz 2009, o 13:53 \(\displaystyle{ a^3-1=(a-1)(a^2+a+1)}\) vancover Użytkownik Posty: 21 Rejestracja: 7 wrz 2009, o 16:43 Płeć: Mężczyzna Lokalizacja: lublin Podziękował: 2 razy Jak to sprowadzić do wspolnego mianownika? Post autor: vancover » 20 wrz 2009, o 13:58 Ale dalej mnie to nie poratuje abc666 Jak to sprowadzić do wspolnego mianownika? Post autor: abc666 » 20 wrz 2009, o 14:03 Mnożysz drugi ułamek przez \(\displaystyle{ \frac{a^2+a+1}{a^2+a+1}}\) i już vancover Użytkownik Posty: 21 Rejestracja: 7 wrz 2009, o 16:43 Płeć: Mężczyzna Lokalizacja: lublin Podziękował: 2 razy Jak to sprowadzić do wspolnego mianownika? Post autor: vancover » 20 wrz 2009, o 14:09 Ale dalej nie wyjdzie bo w drugim ułamku jest \(\displaystyle{ 1-a}\) a nie \(\displaystyle{ a-1}\) abc666 Jak to sprowadzić do wspolnego mianownika? Post autor: abc666 » 20 wrz 2009, o 14:22 Cały czas widziałem tam \(\displaystyle{ a-1}\) . W takim razie pomnóż przez \(\displaystyle{ \frac{-a^2-a-1}{-a^2-a-1}}\) vancover Użytkownik Posty: 21 Rejestracja: 7 wrz 2009, o 16:43 Płeć: Mężczyzna Lokalizacja: lublin Podziękował: 2 razy Jak to sprowadzić do wspolnego mianownika? Post autor: vancover » 20 wrz 2009, o 14:35 Teraz to nie wiem jak mam to obliczyć To napisze inaczej. Tamto co napisałem to były już troche moje obliczenia a teraz napisze ten przykład od początku i powiedzcie mi co mam zrobić \(\displaystyle{ \frac{a+1}{ a^{3}-1 } - \frac{1}{ a^{2}+a+1 } - \frac{2}{1-a}}\) abc666 Jak to sprowadzić do wspolnego mianownika? Post autor: abc666 » 20 wrz 2009, o 14:41 \(\displaystyle{ \frac{a+1}{a^3-1} - \frac{1}{a^2+a+1}- \frac{2}{1-a} = \frac{a+1}{a^3-1} - \frac{1}{a^2+a+1}+ \frac{2}{a-1} =...}\) zajmij się najpierw dwoma ostatnimi ułamkami vancover Użytkownik Posty: 21 Rejestracja: 7 wrz 2009, o 16:43 Płeć: Mężczyzna Lokalizacja: lublin Podziękował: 2 razy Jak to sprowadzić do wspolnego mianownika? Post autor: vancover » 20 wrz 2009, o 15:05 no kurcze nie wiem już jak mam to robić justyna1985 Użytkownik Posty: 272 Rejestracja: 9 wrz 2009, o 10:39 Płeć: Kobieta Lokalizacja: KRAKÓW / BRZESKO Pomógł: 39 razy Jak to sprowadzić do wspolnego mianownika? Post autor: justyna1985 » 20 wrz 2009, o 20:35 Nie wiem czy o to chodziło ale po sporwadzeniu do wspólnego mianownika wyszło coś takiego no to sama zapędziłam się w kozi róg .... matma to tylko moje hoobby.... Ostatnio zmieniony 20 wrz 2009, o 21:28 przez justyna1985, łącznie zmieniany 2 razy. abc666 Jak to sprowadzić do wspolnego mianownika? Post autor: abc666 » 20 wrz 2009, o 20:51 yyy bez przesady \(\displaystyle{ \frac{a+1}{a^3-1} - \frac{1}{a^2+a+1}- \frac{2}{1-a} = \frac{a+1}{a^3-1} - \frac{1}{a^2+a+1}+ \frac{2}{a-1} =\\=\frac{a+1}{a^3-1}- \frac{a-1}{a^3-1}+ \frac{2a^2+2a+2}{a^3-1}= \frac{a+1-a+1+2a^2+2a+2}{a^3-1} = \frac{2a^2+2a+4}{a^3-1}}\) vancover Użytkownik Posty: 21 Rejestracja: 7 wrz 2009, o 16:43 Płeć: Mężczyzna Lokalizacja: lublin Podziękował: 2 razy Jak to sprowadzić do wspolnego mianownika? Post autor: vancover » 21 wrz 2009, o 16:16 A można tak sobie po prostu zmienić znak z - na + ? abc666 Jak to sprowadzić do wspolnego mianownika? Post autor: abc666 » 21 wrz 2009, o 21:52 minusa przeniosłem do mianownika ułamka
No niestety ani jedno ani drugie nie jest zgodne z moimi wynikami. Oto treść całego zadania: Wykaż, że dla dowolnych liczb naturalnych n, k gdzie k jak sprowadzić do wspólnego mianownika